If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-20p+25=0
a = 2; b = -20; c = +25;
Δ = b2-4ac
Δ = -202-4·2·25
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10\sqrt{2}}{2*2}=\frac{20-10\sqrt{2}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10\sqrt{2}}{2*2}=\frac{20+10\sqrt{2}}{4} $
| -(2-5x)+(-2)=18 | | 12x+6x-28=0 | | 28=35-x | | 7=2x+12 | | -17=3k | | -2b-11=b+21+9b | | -4(a+3)+4=-2(3a-5) | | 15x-(3x-4)=88 | | 7(x+-8)+19=-16 | | x+3=-2x+x+7 | | 18-8x=-70 | | 27/6y=9/6 | | 20-d=16 | | 0.6(x-6)=6.6 | | 2x+23-3x=4x-10+12 | | 7(x+2)+x=2(x+3)+4 | | a2-19a+42=0 | | 6-x=3(x-1) | | 27x-4=25x+4 | | 4(37-8y)+5y=13 | | -5(6-5a)=18a+40 | | 4x-2+6=-2 | | 8(x+6)+x=2(x+5)+2 | | T/p=12.5 | | 6.9x+1225=47.61+35x | | 170/x=3 | | x2+x=60 | | 99=7x+2(6x+2) | | 12x-8=5x+10 | | 99=7x+(6x+2) | | -3(x+5)+3=5(x+5)+6 | | 65=-2x5 |